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ABSTRACT

Introduction: Most SV studies in livestock rely on short-read sequencing, posing challenges in accurately
characterizing large genomic variants due to their limited read length.

Objectives: Our goal is to reveal structural variation and novel sequences specific to Holstein and Jersey
cattle breeds using long-read and pan-genome analyses.

Methods: We sequenced 20 Holsteins and 8 Jersey cattle using PacBio HiFi to 20x, and integrated five
read-based and one assembly-based SV caller to determine SVs.

Results: We assembled the 28 genomes averaging 3.25 Gb with a contig N50 of 69.36 Mb and using the
ARS-UCD1.2 reference, we acquired Holstein/Jersey SV catalogs with 74,068/54,689 events spanning
202/135 Mb (7.43 %/4.97 % of the genome). SVs were enriched in less conserved, non-coding, and non-
regulatory regions. Comparing Holsteins with differing feed efficiency (FE), SVs unique to high FE were
linked to energy metabolism and olfactory receptors, while those specific to low FE were associated with
material transport. We constructed Holstein/Jersey pangenome graphs with 148,598/105,875 nodes and
208,891/147,990 edges, representing 47,028/37,137 biallelic and multi-allelic events, and
63.75/42.34 Mb of novel sequence. We observed SV count saturation with 20 Holsteins, while adding
Jerseys significantly increased the SV count, highlighting breed-specific SV events.

Conclusion: Our long-read data and SV catalogs are valuable resources, revealing that the cattle genome is
more complex than previously thought.

Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

For thousands of years, cattle have supported human survival,
first as hunted animals and, for the past 10,000 years, as livestock
raised for meat, milk, and draft work [1]. Cattle, including Bos tau-
rus and Bos indicus, exhibit significant genetic diversity impacting
milk production, meat quality, disease resistance, and environmen-
tal adaptation. Understanding this variation will improve knowl-
edge of cattle biology, provide new targets for breeding
programs, and support efforts to improve livestock sustainability.
Structural variations (SVs) refer to genomic differences that are
not SNVs, including insertions, deletions, inversions, and transloca-
tions ranging from 50 bp to megabases between individuals [2].
“CNV” often refers to unbalanced SVs (>1 kb insertions and dele-
tions). Significant progress has been made in understanding SVs
in mammals [3-9]. While SNVs are more frequent, SVs involve
more genomic sequences and have greater potential effects,
including altering gene structure and dosage, gene regulation,
and exposing recessive alleles [10]. In particular, segmental dupli-
cations (SDs) are significant catalysts for SV formation [9,11,12].
SVs are important for phenotypic variability and disease suscepti-
bility. A human study showed that SNVs and SVs accounted for
~82 % and ~18 % of the total genetic variation in gene expression,
respectively [13]. In humans, SVs are 3 x more likely to associate
with GWAS signals than SNVs, and larger SVs (>20 kb) are up to
50 x more likely to affect gene expression compared to SNVs
[7,14]. Although some SVs show linkage disequilibrium (LD) with
flanking SNVs [15], many SVs are not easily tagged by SNVs and
often fall in difficult-to-map repetitive regions (such as SDs) not
well covered by SNP arrays [16,17]. Combining SV and SNV data
in GWAS has linked SVs with human diseases and animal produc-
tion traits [18-26].

Despite their significance, most SV studies in livestock rely on
short-read sequencing, posing challenges in accurately characteriz-
ing large genomic variants due to their limited read length. Many
studies reported CNV/SV discovery in cattle [25-35]. Notably,
specific SVs in cattle have been linked to various traits. For exam-
ple, color sidedness in cattle is determined by two alleles resulting
from translocations involving the KIT gene on chromosomes 6 and
29 [36]. A large-scale study of CNVs in 336 cattle from 39 breeds
identified 362 significant CNV regions (CNVRs) related to olfactory
receptors, pathogen resistance, and productivity, highlighting their

potential role in cattle adaptation [37]. Another study in over 500
bulls from 17 taurine breeds found 26,223 CNVRs covering 4.05 %
of the genome, with results in an interactive database for detailed
exploration [38]. However, few of these SVs are validated at the
sequence level, and overlaps among these cattle SV datasets are
low (< 40 %), indicating that better SV annotation is needed. There-
fore, the precise characterization and comprehensive exploration
of SVs in the cattle genome remains incomplete.

Detecting SVs from microarray or short-read sequencing suffers
from low sensitivity (30-70%) and up to 85% false discovery
[7,14,39-42]. CGH and SNP arrays have limitations that include a
lack of information on variation structure, limited resolution, and
an inability to detect balanced rearrangements. Short-read
sequencing methods (RP, RD, SR, LA, hybrid) have constraints due
to indirect inferences and the short length of reads [43], making
it difficult to detect smaller or balanced events [6,44]. Aligning
short reads to a reference assembly works well in confident (non-
repetitive) regions, but is problematic in difficult repetitive regions
like SDs enriched for SVs [4,9,11,12,45]. Therefore, long-read
sequencing and high-throughput genotyping platforms are needed
for accurate SV detection and analysis.

The current cattle reference genome was derived from a female
taurine Hereford cow L1 Dominette 01,449 [46]. However, it is
widely acknowledged that a single reference genome cannot cap-
ture the full genomic diversity of an entire species. The separate
domestications and selections of taurine (Bos taurus taurus) and
indicine/Zebu cattle (Bos taurus indicus) highlight the limitations
of ARS-UCD1.2, which does not adequately represent the extensive
genetic variation within the Bos taurus species [47]. Aligning reads
with non-reference alleles to a single reference genome often
results in unmapped or misplaced reads [48]. This mapping bias
leads to the underrepresentation of important genetic variants,
especially rare alleles or large SVs that may play crucial roles in
complex traits.

To overcome this bias, the concept of the pangenome provides a
viable solution by including all genomic sequences within a species
or specific phylogenetic group [49,50]. Early pangenome projects
mainly focused on identifying novel sequences and integrating
them into the reference genome [34,51,52], preserving the linear
reference genome structure for compatibility with subsequent
analyses. Recently, the development of graph-based genome struc-
tures has enabled the representation of all possible sequences
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within a unified coordinate system, effectively mitigating mapping
bias. Programs like vg [53], Minigraph [54], Minigraph-Cactus (MC)
[55], and the PanGenome Graph Builder (PGGB) [56] were devel-
oped to construct pangenome graph assemblies [57]. Graph pan-
genomes, compared to their linear counterparts, improve read
mapping rates and increase the detection sensitivity of variants,
particularly SVs [52,58-61]. Like humans, cattle and other livestock
are seeing increasing numbers of high-quality assembled pangen-
omes. Various graph pangenome projects have been initiated for
farm animals, including cattle, sheep, and pigs [47,62-67]. For
example, Pausch’s lab adapted vg graphs and developed breed-
specific and pan-genome reference graphs in cattle, showing their
superior accuracy over traditional linear references and uncovering
70 Mb of novel sequences [58,68,69]. The Prendergast lab inte-
grated 116 Mb of novel African cattle sequences into the reference
assembly, improving read mapping rates and SV calling accuracy
[52]. Leonard et al. showed structural variant-based pangenomes
from haplotype-resolved assemblies were highly consistent across
platforms and algorithms, creating multi-species super-
pangenomes with good consensus [64,65]. Recently, they con-
structed a pangenome from 16 HiFi cattle assemblies and used it
to identify SNVs and SVs [70]. After SV genotyping using short reads
by PanGenie [71], they conducted a preliminary molQTL mapping
with 117 testis transcriptome data, identifying 92 potential causal
SV candidates. These studies collectively demonstrate the power
of using variation-aware graph-based approaches in cattle geno-
mics, providing a more accurate and comprehensive mapping of
genetic variations compared to traditional linear references. A few
T2T or near-complete assemblies were reported for Holstein cattle
and goats, filling many gaps in the reference genome, particularly in
immunogenomic regions [72,73]. Pangenomes have also been cre-
ated for sheep, Bos indicus cattle, and yaks [47,62,63].

In our study, we PacBio HiFi-sequenced 20 Holstein and 8 Jersey
cattle to high coverage, prepared high-quality SV catalogs and con-
structed their pangenome graphs. As expected, the SV catalogs
generated from these samples significantly increased the SV count,
highlighting breed-specific SV events. Compared to SNVs, SVs
exhibited a unique contribution to genome diversity, underscoring
their importance in understanding the genetic architecture of
cattle.

Materials and methods
Compliance with ethics requirements

Ethical permission to collect blood samples from cattle was
approved by the US Department of Agriculture, Agricultural
Research Service, Beltsville Agricultural Research Center’s Institu-
tional Animal Care and Use Committee (Protocol 18-005).

Sample collection

Under the approval of the US Department of Agriculture, Agri-
cultural Research Service, Beltsville Agricultural Research Center’s
Institutional Animal Care and Use Committee (Protocol 18-005),
and the US Dairy Forage Research Center (A0050543-R04), we col-
lected fresh blood samples from 20 Holstein and 8 Jersey dairy cat-
tle. We isolated the high-molecular-weight (HMW) DNA from
whole blood using the Nanobind/Circulomics UHMW Blood extrac-
tion protocol and sheared it to 20 kb mode size using a Diagenode
Megaruptor 3. We checked DNA quantity on a Qubit Fluorome-
ter with a dsDNA HS Assay kit (Thermo Fisher).
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Library construction and PacBio sequencing

We examined the sizes of DNA fragments on a Fragment Ana-
lyzer (Agilent Technologies). To obtain long reads, we removed
fragments below 15kb in length on the BluePippin using the
BLF-7510 cassette under the 0.75 % DF Marker S1 high-pass 15-
20 kb protocol (Sage Science). We prepared SMRTbell libraries for
sequencing according to the protocol ‘Procedure-checklist-Prepar
ing-whole-genome-and-metagenome-libraries-using-SMRTbell-pr
ep-kit-3.0’. We bound the selected library fractions to polymerase
with either the Sequel Il Binding Kit 3.2 or the Revio Polymerase Kit
and then sequenced them on Sequelll (for Holstein) or Revio (for
Jersey) instruments (PacBio) with 30-h movie times for each sam-
ple. We sequenced samples to a minimum HiFi data amount of
60 Gb (20 x estimated genome coverage).

Data preprocessing

We generated the statistics including N50, Q20, and Q30 using
SeqKit (v.0.10.1) [74] with the default parameters and randomly
down-sampled full coverage datasets to lower coverage levels with
the command “seqkit sample-p”. We obtained the read length
using bioawk (https://github.com/Ih3/bioawk) with the default
parameters. We removed the raw reads shorter than 1 kb using
fastp (v.0.23.3) [75] with the parameter “-1 1000”. We used the
ggplot2 R package (v3.4.2) to visualize all the results.

SVs detection
Read-based approaches

We performed a read-based approach to call SVs with multiple
tools and strict filtering steps. We aligned each dataset against the
cattle reference genome ARS-UCD 1.2 [46] using pbmm2 v1.9.0
(https://github.com/PacificBiosciences/pbmm?2) with parameters:
—-preset HIFI —-sort —-rg '@RG\tID:myid\tSM:mysample’ —-log-
level INFO. We then removed the sequences with MAPQ less than
30 by SAMtools (v.1.12) [76] with the parameter “-q 30” and cre-
ated new index files with the index function. Subsequently, we
employed five SV callers to detect SVs, including pbsv (v.2.8.0)
(https://github.com/PacificBiosciences/pbsv), SVIM (v.1.4.2) [77],
Sniffles (v.2.0.7) [78], SVision (v.1.3.8) [79], and cuteSV (v.2.0.1)
[80]. We applied these callers directly to aligned reads with default
parameters except for cuteSV (v.2.0.1) [80], whose parameters
were: —max_cluster_bias_INS 1000 —-diff_ratio_merging_INS 0.9
—-max_cluster_bias_DEL 1000 —-diff_ratio_merging_DEL 0.5.

Assembly-based approach

Firstly, we used Hifiasm (v.0.18.5) [81] to assemble the PacBio
HiFi reads with default parameters and convert the GFA assembly
graph to a FASTA file of all sequences using gfatools (v.0.4-1214)
(https://github.com/Ih3/gfatools). Next, we applied minimap2
(v.2.24-r1122) [82] to align the assembled files to the cattle
reference genome [46] with default parameters. Then, we run
SVIM-asm  (v.1.0.2) [83] with parameters “svim-asm
haploid —-min_sv_size 50 —-max_sv_size 200,000 —tandem_dupli
cations_as_insertions —-interspersed_duplications_as_insertions”
for SV detection. We assessed the completeness of the assemblies
with BUSCO (v.5.4.3) [84] and the single plus duplicated complete
BUSCO gene counts were reported. We calculated the assembly
base QVs with Inspector (v.1.0.2) [85]. Key metrics (N50, N9O,
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longest contigs, number of contigs, GC content, BUSCO scores) have
been represented as snailplots.

High-confidence SVs

We merged the five SV callsets of each individual derived from
the above read-based approaches for each sample. We used Jas-
mine (v.1.1.5) [86]to merge SVs based on the coordinates and
length by running the command “jasmine file_list = vcf_list.txt
out_file = combined.vcf max_dist = 1000 spec_len =50
spec_reads = 1”. As suggested by benchmark analysis of LRS callers
[87,88], we chose results that have a priority of pbsv > SVIM > Snif-
fles > SVision > cuteSV. Using the VCF file generated by Jasmine, we
conducted three steps to filter out lower-quality SVs. We removed
SVs in the sex and unplaced chromosomes, as well as those shorter
than 50 bp, and retained SVs detected by at least two callers for
each individual. For the SVs detected by the assembly-based
method, we also removed those in the sex and unplaced chromo-
somes, as well as those shorter than 50 bp for each individual. Con-
sequently, we directly merged this clean SV dataset with the
dataset from the read-based approaches above and obtained the
final high-confidence SVs.

Functional relevance of SVs

SV annotation

We first performed SV annotation for the SV dataset using
ANNOVAR (v.2020-6-8) [89]. We then classified SVs into 10 cate-
gories based on their coordinates with genomic features if they
overlapped by at least 1 bp, including intergenic, intronic, exonic,
ncRNA_intronic, downstream, upstream, ncRNA_exonic, UTR3,
UTRS5, and splicing. Similarly, to explore the repeats of the SV data-
set, we annotated the repeat elements and SVs where their recip-
rocal overlap percentage was at least 0.8. The repeat information
was downloaded from the UCSC genome browser’s cattle Repeat-
Masker database (https://hgdownload.soe.ucsc.edu/goldenPath/-
bosTau9/database/rmsk.txt.gz). We utilized the intersect function
of bedtools (v.2.30.0) [90] to find the overlapping regions.

Chromatin state and TF enrichment

To validate the activity of SVs, we conducted the chromatin
state and TF enrichment analysis of SVs. We first downloaded 14
chromatin states predicted in eight major cattle tissues using
ChIP-seq including four histone modification marks (i.e.,
H3K4me3, H3K4me1l, H3K27ac, and H3K27me3) and chromatin
accessibility (ATAC-seq) [91]. The 14 chromatin states were Acti-
ve_TSS, CTCF/Active_TSS, Flanking_TSS, Promoter, Active_Pro-
moter, CTCF/Promoter, Poised_Promoter, Active_Enhancer, CTCF/
Enhancer, Primed_Enhancer, Active_Element, Poly-
comb_Repressed, Insulator, and Low_Signal. We then obtained
the TF dataset from the AnimalTFDB4 [92] for further enrichment
analysis. We carried out enrichment analysis for each SV type
and each chromatin state using the fisher function of bedtools
(v.2.30.0) [90].

Conservation score annotation

We annotated the SVs using a range of conservation metrics
spanning GERP (genomic evolutionary rate profiling) [93], Phast-
Cons [94], and phyloP [95]. GERP is a well-validated,
evolutionary-constrained method that can identify and quantify
deleterious mutations genome-wide, including at synonymous
and noncoding sites [93]. Low GERP scores predict neutral muta-
tions not under selective constraints. High GERP scores, on the
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other hand, predict deleterious mutations subject to strong purify-
ing selection. Moderate GERP scores, however, are ambiguous and
cannot reliably distinguish between neutral and deleterious muta-
tions [93]. We began by downloading the GERP scores for cattle,
calculated from a whole genome alignment of 91 mammalian gen-
omes, from the Ensembl server (https://ftp.ensembl.org/pub/re-
lease-110/bed/ensembl-compara/91_mammals.gerp_constrained_
element/gerp_constrained_elements.bos_taurus.bb). Then, we
used bigBedToBed (v.1) (https://github.com/ENCODE-DCC/kentU-
tils/) to convert.bb file to.bed file. In light of the wide range in GERP
scores, we segmented them into 11 levels (<10, [10, 20), [20, 30),
[30, 40), [40, 50), [50, 60), [60, 70), [70, 80), [90, 100), >1000).
We applied the Fisher function in bedtools (v.2.30.0) [90] to per-
form enrichment analysis for each SV type and GERP score.

In addition, we downloaded conservation tracks of the
phastcons-100way and phyloP-447way from the UCSC genome
browser (https://hgdownload.cse.ucsc.edu/goldenpath/hg38/
phastCons100way/hg38.100way.phastCons; https://hgdownload.
cse.ucsc.edu/goldenpath/hg38/phyloP447way/hg38.447way.phy-
loP) and converted wigFix format to bed format with wig2bed
(v.6.3.3.12) (https://bedops.readthedocs.io/en/latest/). We pro-
ceeded to map the coordinates of the sites to their corresponding
points on the cattle genome by liftOver [96] with the parameter
“-minMatch = 0.8” and calculated the mean phastCons and phyloP
score for each SV.

SV hotspot identification

Referencing an earlier study [97], we selected the midpoint of
each SV and performed hotspot analysis using the ’hotspotter’
function of the primatR package (v0.1.0) with the parameters
“bw = 200000, pval = 1e-08, num.trial = 2000”. For hotspot detec-
tion and comparison, we incorporated long-read SV data sets from
previous publications [47,52,69]. In accordance with the prior
study [47,97], we sorted our inferred SV hotspots into three
groups: 'terminal’, situated within the last 5 Mb of the chromo-
some; ’'known’, coinciding with hotspots identified in earlier
research if they overlap by at least one bp; and 'novel’, specific to
this study.

Differential SVs identification

To detect differential SVs, we first merge the individual SVs
within each group using Jasmine (v.1.1.5) [86] with its default set-
tings. Next, we employed the intersect function of bedtools
(v.2.30.0) [90] to distinguish between differential and shared SVs
between comparison groups. We considered SVs to be differential
if they had no overlap (the differential SVs were also treated as the
group-specific SVs because they were present in all samples in one
group and not present in any samples of the other group, for both
Holstein high and low RFI groups and Holstein-Jersey comparisons)
and shared when the reciprocal overlap exceeded or equaled 80 %
(The shared SV was defined as one where at least one sample in
each group has an overlapping SV). To test the significance of the
SV count differences between the two groups or breeds, we
employed two non-parametric statistical methods: permutation
testing and the Chi-Square/Fisher’s Exact test. These approaches
are well-suited for small sample sizes and make no assumptions
about data normality. In particular, for the HOL and JER compar-
ison, we used a logistic regression model to account for sequencing
platform effects prior to conducting the non-parametric analyses.

We conducted the chromatin state enrichment analysis of dif-
ferential and shared SVs using the fisher function of bedtools
(v.2.30.0) [90]. We utilized the Genomic Regions Enrichment of
Annotations Tool (GREAT) (v4.0.4) [98] for gene ontology (GO)
analysis to explore the function of SVs. After multiple comparison
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corrections, we included significant GO terms, retaining results
with BinomFdrQ < 0.05 and RegionFoldEnrich > 2.

Construction of cattle pangenome

We used the Minigraph pipeline to construct the pangenome
graph for cattle, with the ARS-UCD1.2 serving as the backbone of
the graph. Due to the presence of numerous small fragments in
the ARS-UCD1.2 assembly, we only considered the sequences of
autosomes.

Biallelic and multiallelic SV detection using a graph-based method

By slightly modifying a previously reported workflow [69], we
identified biallelic and multiallelic SVs from the graph genome.
First, with the current Hereford-based linear reference genome
[46] as the backbone, we augmented the 40 or 16 partially phased
assemblies into the graph individually to build the multiassembly
graph for Holstein and Jersey with minigraph (v.0.20-r559) [54].
Then by using gfatools (v.0.4-r214) (https://github.com/Ih3/gfa-
tools), which is built on a bubble-popping algorithm, we extracted
bubbles from the multiassembly graph. In the reference graph
model of minigraph (v.0.20-r559) [54], each bubble indicates an
SV, comprising the start and end nodes of reference sequences as
well as the paths that connect them. We annotated these SVs using
the same method outlined above. With the help of bedtools
(v.2.30.0) [90], we compared the graph-based SVs to the linear-
based SVs identified above, differentiating between differential
and shared SVs. We considered SVs to be shared if they exhibited
an 80 % or greater overlap.

Results
PacBio sequencing of Holstein and Jersey cattle samples

We chose the BARC (Beltsville Agricultural Research Center) and
DFRC (Dairy Forage Research Center) herds to represent the diver-
sity of the Holstein and Jersey populations. We generated long-
read whole-genome sequence data from a group of 20 Holstein
and 8 Jersey cattle, utilizing the PacBio Sequel II for the former
and the Revio platform for the latter. Each cow blood sample was
subjected to HiFi sequencing with 1-2 cells, aiming at an average
sequencing depth of at least 20x (ranging from 27 to 54 x ). Each
sample yielded long-read data of more than 60 billion bases,
achieving a depth of over 20x (Fig. 1A and Table S1). The mean
N50 read length was 19.75Kb, with a range from 15.25 to
27.79 Kb (Fig. 1B and Table S1). When the read length reached
around 20 kb, the cumulative throughput accounted for nearly half
of the total. (Fig. 1C). This consistent trend across various sequenc-
ing runs indicated that a significant amount of the data yield was
concentrated within the first 20 Kb. All samples exhibited a central
tendency of GC content at 50 % across reads of disparate lengths
(Fig. S1A, B). By filtering the raw data to exclude below 1 kb, we
effectively selected high-quality sequences for more in-depth anal-
ysis (Fig. 1D).

Using pbmm2 (v.1.9.0) (https://github.com/PacificBiosciences/
pbmmz2), we successfully aligned 99 % of the reads to the ARS-
UCD1.2 reference genome [46], exhibiting an average mapping
intensity of around 98 % (Fig. 1E). For de novo assembly, we utilized
the Hifiasm (v.0.18.5) assembler [81], resulting in the generation of
one primary assembly and two partially phased contig assemblies
(Hap1 and Hap2 in Table S2). The final total primary genome
lengths of 3.26 and 3.16 Gb with average contig N50s were
72.98 Mb and 56.80 Mb for the Holstein and Jersey, respectively,
(Fig. 1F, Fig. S1C, D). According to BUSCO (v.5.4.3) [84], the com-
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pleteness of mammalian universal single-copy orthologs in the
Holstein and Jersey genome assemblies was found to be 94.99 %
and 95.88 %, respectively (Table S2), which was consistent with
the 95.80 % seen in previously analyzed cattle genomes. Similarly,
the duplication rates of 2.14 % and 2.29 % in the assemblies are
consistent with the typical 2.00 % range observed in Hereford gen-
omes. BUSCO scores for the partially phased assemblies were lower
but still consistently > 90 % complete (Table S2). The quality value
(QV) of the assemblies assessed by the Inspector (v.1.0.2) [85] indi-
cated high QV values (average 45.51) for all the primary than
phased assemblies (Table S2). According to Rhie et al. [99], these
cattle assemblies were therefore considered as high-quality under
the VGP-2020 standards.

Building and characterizing a catalog of SVs

Previous studies have shown that HiFi sequencing significantly
increases SV discovery [47,64,81,100]. In this study, we detected
four classes of canonical SVs (DEL, INS, DUP, and INV). To obtain
reliable SVs, we used two strategies including the “read-based”
and “assembly-based” strategies to detect SVs. For the “read-
based” strategy, we selected five callers: pbsv (v.2.8.0) (https://
github.com/PacificBiosciences/pbsv), SVIM (v.1.4.2) [77], Sniffles
(v.2.0.7) [78], SVision (v.1.3.8) [79], and cuteSV (v.2.0.1) [80], all
specifically designed for SV detection by long-read mapping-
based approaches for each genome. For “assembly-based”, we used
SVIM-asm (v.1.0.2) [83] to call SVs (Fig. 2A). The counts of SVs
obtained from different combinations of multiple callers ranged
from 3,158 to 75,114 (Fig. 2B, C). For each sample, we applied three
filtering steps to remove unreliable SVs (on unplaced contigs,
<50 bp, and detected by only one read-based caller) (Fig. 2D). We
then merged SVs through the union of SV sets from two
approaches. Finally, we identified an average of 28,463 high-
confidence SVs per sample, ranging from 26,365 to 29,739
(Fig. 2E, F and Fig. S2A, B). DELs and INSs were predominant, and
each sample contained an average of 13,816 DELs (48.54 %),
14,222 INSs (49.97 %), 163 DUPs (0.57 %), and 262 INVs (0.92 %)
(Fig. 2G). Especially, SVIM reported the most SVs (Fig. S2C). We
observed that the median lengths of DELs and INSs were
140/140 bp and 128/132 bp, respectively, significantly shorter than
those of INVs (2,174/1,820 bp) and DUPs (5,991/5,710 bp) (Fig. 2H,
I). Upon merging all SVs discovered in each individual, we obtained
74,068 SVs for Holstein and 54,689 SVs for Jersey (Fig. S2D,
Table S3). Most INVs and DUPs can be found in BTA5 and BTA10,
15 and 26, respectively (Fig. S2D). As the number of individuals
increased, the increase in the number of detected SVs reached pla-
teaus (Fig. 2J). However, an obvious jump occurred when transi-
tioning from Holstein to Jersey breeds, indicating the widespread
presence of breed-specific SV events (Fig. 2]).

To assess the effects of coverage on the SV detection, we ran-
domly down-sampled our full coverage data sets to lower coverage
levels, i.e., 5, 10, 15, 18, 20, 25, and 28 x coverage. The read-length
distributions of different coverages were similar (Fig. S3A), but
with the increase of depth, the N50 length also increased
(Fig. S3B). The number of SVs increased marginally when the depth
was more than 10-fold (Fig. S3C). We then compared the SVs to the
results based on the full coverage (Fig. S3D) and measured recall
rates and false positive rates (Fig. S3E). Both the recall rates and
false positive rates seem leveled at 10 x coverage with a recall rate
of ~90.6 % and a false positive rate of ~9.4 %.

Functional relevance of SVs

We first grouped the SVs into singleton and non-singleton
according to whether they appear in one individual or more than
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Fig. 1. Summary of the long-read sequencing data. A. The sequencing depth of long-read data obtained from 20 Holstein (pink) and eight Jersey (green) cattle via the PacBio
Sequel II and Revio platforms, respectively. B. N50 statistics for long-read sequencing data of 28 samples. C. Cumulative distribution of total bases (Y-axis) over read length
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sequencing data of 28 samples. F. Snail plots of one Holstein genome assembly. Key metrics are shown for the genome such as the longest scaffold (red vertical line), N50
(orange track), N90 (light orange track), GC content (external blue track), and BUSCO scores (outer circular pie chart in green).

one individual. Non-singletons represented 78.16 % of the total
identified SVs (Fig. 3A, Fig. S4A). To explore their potential func-
tions, we annotated SVs based on their co-localization with geno-
mic features using their genomic coordinates. A substantial
percentage (65.44%) of the SVs were in intergenic regions
(Fig. 3B). We further observed that SVs showed enrichment with
repetitive elements, with LINE/L1 elements being particularly
dominant (Fig. 3C, Fig. S4B, C). In addition, we investigated the
enrichment of SVs in 14 chromatin states (Active_TSS, CTCF/Acti-
ve_TSS, Flanking_TSS, Promoter, Active_Promoter, CTCF/Promoter,
Poised_Promoter, Active_Enhancer, CTCF/Enhancer, Primed_En-
hancer, Active_Element, Polycomb_Repressed, Insulator, and
Low_Signal) across eight tissues (adipose, cerebellum, cortex,
hypothalamus, liver, lung, muscle, and spleen) [91]. We observed
that INVs and DUPs had higher enrichment in poised_promoter
and polycomb_repressed states of the cortex tissue (Fig. 3D). We
further downloaded the transcription factors (TFs) information
from the AnimalTFDB4 [92] for the enrichment and found that
INVs had an enrichment with P53 (Fig. S4D-F). We also retrieved
GERP information [93] and classified the scores into 11 levels
(Fig. S4G). We found that DEL and INS were mainly enriched with

low GERP, while INV and DUP were mainly enriched with high
GERP (Fig. 3E). We further calculated the PhastCons value and phy-
loP values for each SV region [94,95], discovering that these values
were approximately 0 for most SV regions (Fig. S4H-K).

The number distributions of DEL and INS of different sizes were
similar (Fig. 3F). Most of all SVs obtained in this study overlap with
previously published results [34], and this high overlap
(75.62 %/74.95 %) was consistent across all SV classes (Fig. 3G).
Our analysis revealed 169/156 SV hotspots spanning about
161/138 Mb of the genome (Table S4), which were nonrandomly
distributed (Fig. 3H). Of these hotspots, 79/83 were within the last
5 Mb of chromosome arms. Except for the terminal regions of chro-
mosomes, 46/41 hotspots overlap with hotspots identified in pre-
viously published long-read-based SV datasets [47,52,69],
whereas the 44/32 remaining hotspots were novel (Fig. 3H).

Differential SVs between Holsteins with high and low RFI

Feed intake is one of the major expenses associated with milk
production and animals that produce the same amount of milk
while eating less feed are more efficient than other animals
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[101]. Lactating dairy cows in the BARC herd have been selected for
divergent residual feed intake (RFI) since 2012, and those data
were available for all Holsteins used in this study. Individual RFIs
were sorted from high to low and the top 5 and the bottom 5 were
selected as comparison groups to explore the SV that affects RFI
(Table S1). Notably, high RFI correlates with low feed efficiency
(FE; animals eat more than expected), while low RFI correlates
with high FE (animals eat less than expected). We defined the
group-specific SVs, which were present in all samples in one group
and not present in any samples of the other group for the Holstein
high and low RFI group comparison. We found that most SVs were
shared in common between the two groups, and the numbers of
specific SVs in the high and low groups were 4,906 and 4,505 for
high and low RFIs, respectively (Fig. 4A, Fig. S5A). Both permuta-
tion testing and Chi-Square/Fisher’s Exact test yielded p-values
below 0.05, indicating that the difference in the number of SVs
between the two groups was significant. We investigated the
enrichment of SVs in 14 chromatin states in eight tissues in both
groups and except for the polycomb-repressed state, no SVs were
enriched in other states (Fig. 4B). We then used the GREAT
(v4.0.4) [98,102] to annotate specific SVs based on their coordi-
nates. We found that the specific SVs in the low RFI group were
mainly related to material transportation (Fig. 4C, Table S5), while
the specific SVs in the high group were primarily related to energy
metabolism and olfactory receptor functions (Fig. 4C, Table S6).

Differential SVs between Holstein and Jersey

Holstein and Jersey cattle are two of the most popular dairy
breeds, each with distinct characteristics. Jersey cows are smaller
in build and their milk contains more protein, more fat, and tastes
far richer and creamier than Holstein milk. Based on the above two
SV datasets obtained from Holstein and Jersey cattle, we explored
the differential SV that may influence their characteristics. We
defined the breed-specific SVs, which were present in all samples
in one breed and not present in any samples of the other breed
for the Holstein-Jersey breed comparison. We found that most
SVs were shared in common between the two breeds, and the
numbers of specific SVs in the Holstein and Jersey cattle were
19,235 and 7,603 respectively (Fig. 4D, Fig. S5B). Both permutation
testing and Chi-Square/Fisher’s Exact test yielded p-values below
0.05, indicating that the difference in the number of SVs between
the two breeds was significant. We investigated the enrichment
of SVs in 15 chromatin states in eight tissues in both breeds and
except for the polycomb-repressed state, no SVs were enriched in
other states (Fig. 4E). The Holstein-specific SVs primarily related
to cellular signaling, transport, regulation, and metabolic pro-

<

Journal of Advanced Research xxx (xXxx) xxx

cesses, including lipid and fatty acid handling, sensory perception,
gene expression modulation, cytoskeletal dynamics, and neuronal
communication. They collectively highlighted key biological func-
tions essential for maintaining cellular homeostasis, response to
stimuli, and overall organismal health (Fig. 4F, Table S7). The
Jersey-specific SVs mainly involved immune defense, metabolism
of specific compounds, regulation of protein modifications, cell
migration, neural and cardiac development, and enzyme functions,
highlighting essential biological and physiological processes
(Fig. 4F).

Cattle pangenome construction

We then constructed genome graphs of Holstein and Jersey
from partially phased contig assemblies to further explore SVs.
Generally, the three indicators, including N50, BUSCO scores, and
QV, were all greater in the primary genome than the other two
haplotypes (Fig. S6A, B, and Table S2). The Hereford-based linear
reference genome formed the backbone of the bovine multiassem-
bly graph. We augmented the two graphs with the 40 and 16 addi-
tional assemblies, added to increase the Mash distance from the
reference (Fig. S6C, D). Generally, the pangenome size increased
as additional genomes were added (Fig. 5A). The two resulting
multiassembly graphs contained 119,031 and 78,922 nonreference
nodes spanning 915 and 697 Mb with 32.91 % and 25.27 % of the
resulting pangenome being flexible (i.e., not shared by all assem-
blies) (Fig. 5B, Table S9). The average number of non-reference seg-
ments obtained from both breeds was 16,306 and 113,781,
corresponding to 23.23 Mb and 19.88 Mb (Fig. S6E, Table S10).
Finally, 63.75 and 42.34 Mb were added to the reference respec-
tively (Fig. S6E) and the pangenome’s size amounted to 2.78/2.76
Gb. Additionally, the non-reference length shared by 41 or 17
assemblies was the longest (Fig. S6F, Table S11). We estimated
the complexity of the pangenome by calculating the ratio of edges
to nodes (edges/nodes). In general, the complexity of the graph
structures remained consistent across all chromosomes. However,
chromosomes 23 and 29 exhibited notably lower complexity com-
pared to the other chromosomes (Fig. S6G, H). This disparity
underscores the inadequacy of the current cattle reference gen-
ome, which is solely derived from a Hereford cow, in capturing
the extensive genetic variation within the cattle species.

SV discovery from the bovine genome graph

In total, our constructed biallelic SV panel encompassed
18,739/15,722 DELs, 23,083/18,070 INSs and 5,206/3,345 multial-
lelic SVs for Holsteins and Jerseys, respectively (Fig. 5C, Fig. S6], ],

Fig. 3. Functional relevance of SVs. A. Frequency distribution of all SVs and the four types of SVs. In each of the five small panels, the left side represents Holstein and the
right side represents Jersey. Dark color indicates 'Non-Singleton’ and light color indicates 'Singleton’. B. Counts of the four types of SVs across different genomic regions, where
the larger panel displays Holstein and the smaller shows Jersey. C. Annotation of four types of SV based on different repeat types, with the upper panel for Holstein and the
lower panel for Jersey. This figure is a stacked graph, and due to the significant differences among the four SV types overlapping with repeats (e.g., in the Hol group (pink), the
overlap counts of INV, INS, DUP, and DEL are 9, 176, 7, and 2534 respectively), we used a log10 transformation for better visualization. D. Enrichment between SVs and
chromatin states. Within each small cell, the antidiagonal line serves as the boundary. The left triangle represents the enrichment results for Holstein, and the right triangle
represents those for Jersey. An “X” marks the absence of an enrichment signal, while “NS” signifies that enrichment was detected but failed to reach significance (p > 0.05).
Cells that display neither “X” nor “NS” indicate that significant enrichment was achieved. E. Enrichment between SVs and all GERP, with the upper panel for Holstein and the
lower panel for Jersey. F. Length distribution of deletions and insertions in Holstein and Jersey population. G. The SV overlap between the current study (left of O point) and
Zhou et al.’s study (right of 0 point). Striped areas show the proportion of overlapping SVs relative to the total SV count in either study (calculated as the overlapping SV count
divided by the total SV count at the far ends of each bar). Green sections represent SVs unique to the current study, and yellow sections indicate SVs unique to Zhou et al.’s
study. Numbers next to each bar represent the counts of SV in each dataset. The upper panel displays Holstein and the lower panel displays Jersey. H. Genome-wide
distribution of SV hotspots is divided into three categories: last 5 Mbp of chromosomes (yellow), overlapping (light blue), and previously unidentified (red) when compared
with SV analysis of Crysnanto et al. (2021), Talenti et al. (2022) and Dai et al. (2023). The bar plot (inset) shows the total number of hotspots in each group. In each
chromosome, the upper panel represents Holstein, while the lower panel represents Jersey.
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Fig. 4. Differential SVs between different comparison groups. A. The number of different types of SV unique to the high-RFI and the low-RFI group within the Holstein
population. B. Enrichment of high- and low-RFI group-specific SVs across 14 chromatin states. C. The top 20 significant pathways enriched by genes from high- (blue) and
low-RFI (brown) group-specific SVs. The x-axis displays the value of —log;o(FDR). D. The number of different types of SV unique to the Holstein and Jersey population. The
definitions of unique/group-specific and shared are the same as (A). E. Enrichment between breed-specific SVs and 14 chromatin states. F. The top 20 significant pathways
enriched by genes from Holstein- (pink) and Jersey-specific (green) SVs. The x-axis displays the value of —log;o(FDR).

and Table S12). They collectively spanned 2.12 %/1.66 % of the cat- similar (Fig. 5D). In terms of length, multiallelic INS exhibited the
tle genome, with DEL accounting for 0.73 %/0.63 %, INSs for longest mean length of 3,061 bp, while DEL had the shortest mean
0.90 %/0.71 %, and multiallelic SVs for 0.50 %/0.33 %, summing to length of 1,053 bp (Fig. 5C). We observed that a substantial per-
a length of 57.57/4516Mb (19.73/17.10Mb for DEL, centage (64.69 %/64.82 %) of the SVs were in intergenic regions
24.40/19.22 Mb for INS, and 13.45/8.84 Mb for multiallelic SVs). (Fig. 5E). Our investigation of the relationship between SVs and
The number distributions of DEL and INS of different sizes were repetitive elements unveiled significant intersections, particularly
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Fig. 5. SV discovery from the bovine genome graph. A. Variation of genome size in the pan-genome and core genome along with an additional cattle genome. The larger
panel is for Holstein and the smaller one is for Jersey. B. Compositions of the pan-genome and individual genomes. The histogram shows the number of nodes in the 41
genomes with different frequencies. The pie shows the proportion of the nodes marked by each composition. The larger panel is for Holstein and the smaller one is for Jersey.
C. [llustration and number of different SV types. The red lines indicate the reference sequence, and the blue lines represent the non-reference sequence. D. Length distribution
of deletions and insertions. The upper panel is for Holstein and the lower panel is for Jersey. E. Counts of four types of SV in different genomic regions. The larger panel is for
Holstein and the smaller one is for Jersey. F. Annotation of four types of SV with different repeat types. The larger panel is for Holstein and the smaller one is for Jersey. G.
Count of SV in the linear SV call set and Pan SV call set and their overlap. In each Venn diagram, the left panel represents the Pan SV results, while the right panel represents
the linear SV results. The upper (green) section corresponds to deletion results, and the lower (blue) section corresponds to insertion results.
11



Y. Gao, L. Yang, K. Kuhn et al.

with a large number of SVs overlapping with LINE (Fig. 5F). Com-
pared with SVs obtained based on linear methods, it is observed
that two-thirds of SVs overlap between the two data sets (Fig. 5G).

Discussion

In this study, we utilized 28 dairy cattle PacBio HiFi sequencing
datasets with an average depth of 20 x to assemble 56 haploid gen-
omes. To our knowledge, this is the first population-scale publica-
tion on Holstein and Jersey haploid assemblies, addressing a
critical gap in dairy cattle genetic breeding research. The 56 hap-
loid assemblies demonstrate genome continuity, completeness,
and base accuracy comparable to the current cattle reference gen-
ome, ARS-UCD1.2. We constructed cattle pangenome graphs using
these assemblies, enabling accurate SV genotyping from dairy cat-
tle samples. As a high-quality SV panel was previously unavailable
for dairy cattle, this study addressed this gap by constructing a
robust SV catalog comprising 462,152 SVs derived from 56 haploid
assemblies. This comprehensive SV panel introduces many novel
SVs and achieves chromosome-wide phasing, made possible by
haplotype-resolved genomes. The abundance of SVs in our panel
surpasses previously published Holstein and Jersey SV datasets
due to our use of haplotype-resolved genomes and the limitations
of prior datasets that relied predominantly on short reads. Unlike
previous studies that focused mainly on large SVs and unmapped
sequences in a few local breeds, our approach comprehensively
considers both large and small variations, enriching the pange-
nomic landscape for the two most important dairy breeds. Our
findings highlight the value of long reads and pangenome graphs,
enhancing alignment quality and reducing mapping errors. This
refined mapping not only reduces reference bias but also improves
the precision of downstream analyses. Our SV panel includes a
diverse array of multi-allele SVs, which are complex and not previ-
ously explored in depth. As cattle long-read data availability con-
tinues to rise, we are committed to expanding and refining this
panel to construct a comprehensive SV panel for the cattle species.
However, the increased complexity of the genome graphs also
poses challenges to read mapping efficiency, warranting further
exploration to balance alignment efficiency and minimize refer-
ence genome bias. Additionally, while long-read sequencing is pre-
ferred for SV calling, its large-scale application on livestock
remains financially challenging.

Our study reveals that analyzing a few dozen individuals per
breed appears to reach a saturation plateau in SV counts, highlight-
ing the importance of including proper sample size per breed and a
broader range of breeds to fully represent cattle genetic diversity.
At least a few dozen individuals per breed are essential to construct
representative breed-specific pangenome graphs. Such extensive
representation will allow us to effectively compare the advantages
and disadvantages of breed-specific versus global pangenome
graphs, similar to recent studies in humans [59-61]. Additionally,
the SV catalog generated from this study will significantly aid in
future imputation, enhancing the value of existing short-read data
by enabling reprocessing through advanced tools like PanGenie
[71]. Notably, olfactory receptors (ORs) have been independently
observed multiple times using microarray, short-read, and now
long-read sequencing technologies, as well as pangenomes. This
repeated detection across different methodologies warrants fur-
ther investigation to better understand these regions and their
implications in cattle genomics, especially for feed efficiency.

The overlap of SVs between the pangenome graph and the lin-
ear SV panel in our study (67 %) is lower than the 96 % overlap
reported for cattle by Leonard et al. (2023) [65]. This difference
could stem from several factors. First, differences in the popula-
tions analyzed—such as genetic diversity, breed representation,
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and sample size—can influence the number and type of SVs
detected. Second, variations in sequencing technologies and cover-
age levels used between the two studies may have affected the
sensitivity and accuracy of SV detection. Third, the bioinformatic
pipelines, including graph construction, SV calling algorithms,
and overlap criteria, likely play a significant role in the observed
differences. Finally, the evolutionary dynamics of SVs, including
population-specific or rare variants, may also contribute to the dis-
crepancy. These factors highlight the importance of standardizing
methodologies for SV detection and comparison to ensure greater
consistency across studies.

In summary, our findings highlight the necessity of including
diverse breeds and multiple individuals per breed to capture the
full spectrum of cattle genetic variation. The SV catalogs and com-
prehensive pangenome graphs will be valuable resources for
improving imputation accuracy and augmenting the utility of
short-read sequencing data, thus paving the way for more fruitful
and accurate SV-based genetic evaluation, GWAS, and genomic
analyses in cattle. Although our SV panel-enabled genotyping
strategy overcomes challenges in identifying breed-specific SVs,
it only included two dairy breeds. Additionally, the Jersey breed
was represented by only 8 individuals, necessitating more samples.
As more cattle are sequenced using long reads by the Bovine Pan-
genome Consortium, Bovine Long Read Consortium, and Ruminant
Telomere 2 Telomere (RT2T) Project, this limitation will be over-
come, paving the way for a more comprehensive understanding
of breed-specific SVs in the future.

Conclusion

Our cattle SV panel represents a significant advancement in
unraveling the intricate SV landscape within Holstein and Jersey
genomes and their interplay with genetic diversity. This synergy
facilitates comprehensive investigations into the genetic basis of
various phenotypic traits, informing breeding strategies and
advancing our understanding of cattle biology.
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